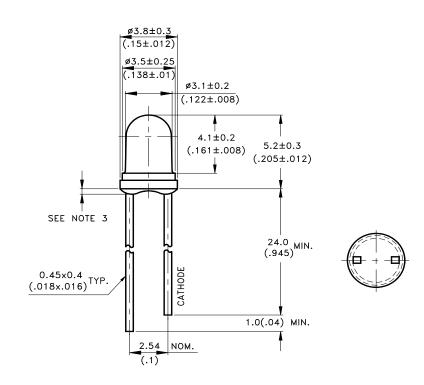


Through Hole Lamp Product Data Sheet LTL1CHJFTNN-0G1A

Spec No.: DS20-2003-075 Effective Date: 05/30/2003 Revision: A

BNS-OD-FC001/A4


LITE-ON Technology Corp. / Optoelectronics No.90,Chien 1 Road, Chung Ho, New Taipei City 23585, Taiwan, R.O.C. Tel: 886-2-2222-6181 Fax: 886-2-2221-1948 / 886-2-2221-0660 http://www.liteon.com/opto

Property of Lite-On Only

Features

- * High luminous intensity output.
- * Low power consumption.
- * High efficiency.
- * Versatile mounting on P.C. Board or panel.
- * I.C. Compatible/low current requirement.
- * 3.1 mm diameter package.

Package Dimensions

Part No.	Lens	Source Color		
LTL1CHJFTNN-0G1A	Amber Transparent	AlInGaP Yellow Orange		

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ± 0.25 mm(.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.0mm(.04") max.
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice.

Part No.: LTL1CHJFTNN-0G1A

Page: 1 of

Property of Lite-On Only

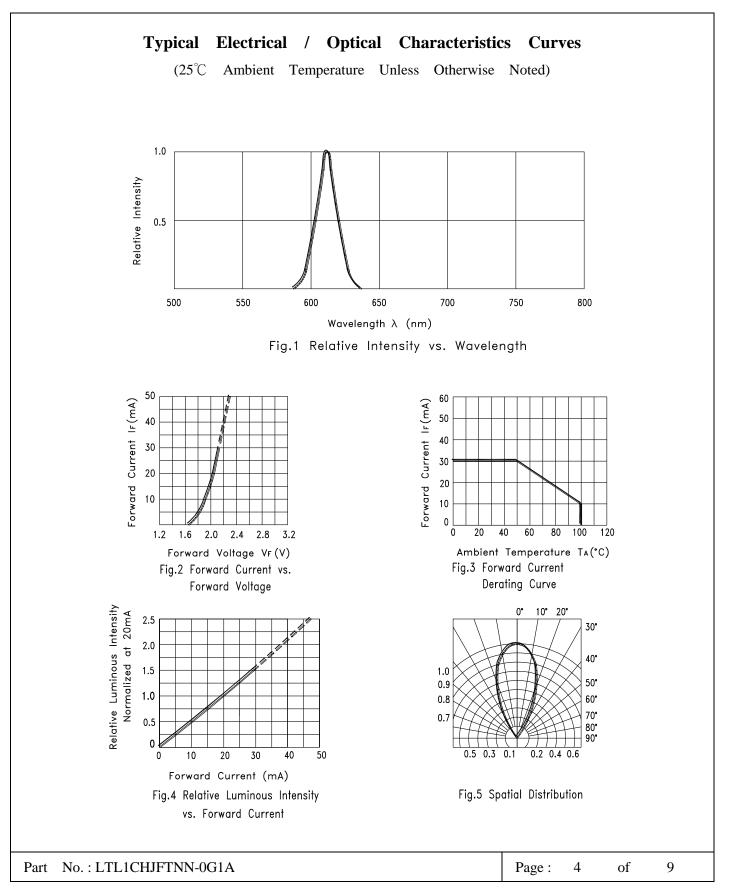
Parameter	Maximum Rating	Unit
Power Dissipation	75	mW
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	60	mA
Continuous Forward Current	30	mA
Derating Linear From 50°C	0.4	mA/°C
Reverse Voltage	5	V
Operating Temperature Range	-40° C to $+100^{\circ}$ C	
Storage Temperature Range	-55° C to $+ 100^{\circ}$ C	
Lead Soldering Temperature [1.6mm(.063") From Body]	260° C for 5 Seconds	

rait INU. LILICIJI INN-UOIA	Part	No.: LTL1CHJFTNN-0G1A
-----------------------------	------	-----------------------

2 of Page :

LITE-ON TECHNOLOGY CORPORATION

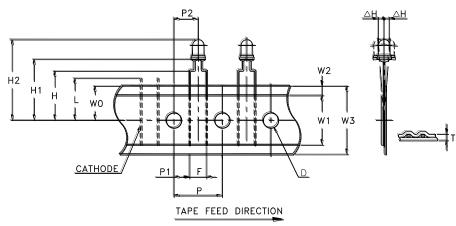
Property of Lite-On Only


Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Luminous Intensity	Iv	65	180		mcd	I _F = 20mA Note 1
Viewing Angle	2 heta 1/2		45		deg	Note 2 (Fig.5)
Peak Emission Wavelength	λр		611		nm	Measurement @Peak (Fig.1)
Dominant Wavelength	λd		605		nm	Note 4
Spectral Line Half-Width	Δλ		17		nm	
Forward Voltage	VF		2.05	2.4	V	IF = 20mA
Reverse Current	IR			100	μ A	$V_R = 5V$
Capacitance	C		40		pF	$V_F = 0$, $f = 1MHz$

- NOTE: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
 - 2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
 - 3. Iv classification code is marked on each packing bag.
 - 4. The dominant wavelength, λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

LITE-ON TECHNOLOGY CORPORATION

Property of Lite-On Only

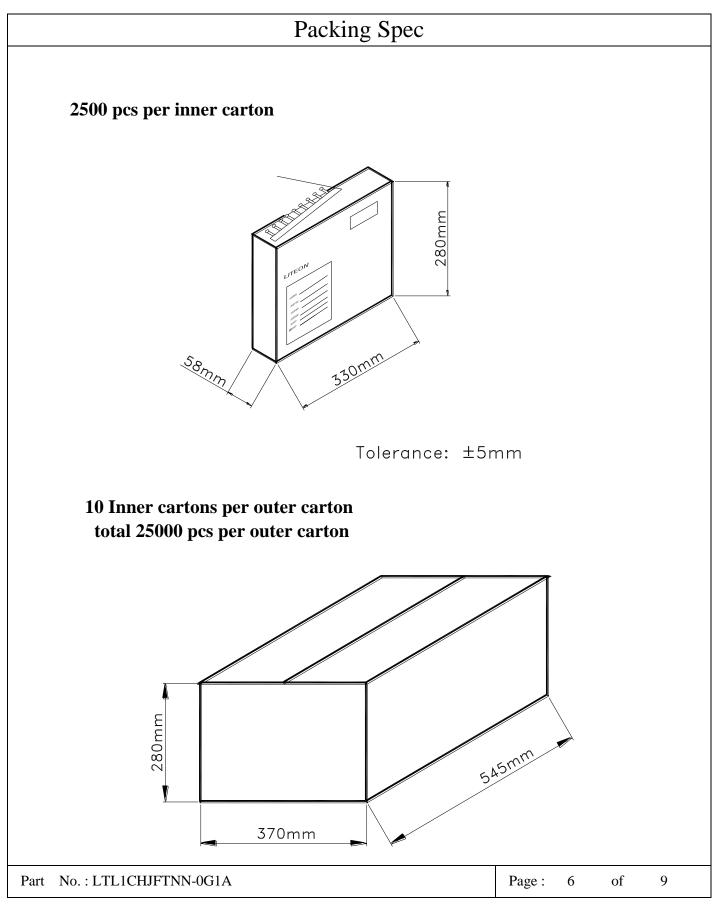


Property of Lite-On Only

Features

- * Compatible with radial lead automatic insertion equipment.
- * Most radial lead plastic lead lamps available packaged in tape and folding.
- * 5mm (0.197") formed lead spacing available.
- * Folding packaging simplifies handling and testing. Reel packaging is available by removing suffix "A" on option.

Package Dimensions



		Specification				
Item	Symbol	Minimum		Maximum		
		mm	inch	mm	inch	
Tape Feed Hole Diameter	D	3.8	0.149	4.2	0.165	
Component Lead Pitch	F	4.8	0.188	5.8	0.228	
Front to Rear Deflection	$\triangle H$			2.0	0.078	
Height of Seating Plane	Н	15.5	0.610	16.5	0.649	
Feed Hole to Bottom of Component	H1	20.0	0.787	22.0	0.866	
Feed Hole to Overall Component Height	H2	24.9	0.980	27.5	1.083	
Lead Length After Component Height	L	V	V0	11.0	0.433	
Feed Hole Pitch	Р	12.4	0.488	13.0	0.511	
Lead Location	P1	3.15	0.124	4.55	0.179	
Center of Component Location	P2	5.05	0.198	7.65	0.301	
Total Taped Thickness	Т			0.90	0.035	
Feed Hole Location	W0	8.5	0.334	9.75	0.384	
Adhesive Tape Width	W1	14.5	0.571	15.5	0.610	
Adhesive Tape Position	W2	0	0	3.0	0.118	
Tape Width	W3	17.5	0.689	19.0	0.748	
	•		-		-	
art No. : LTL1CHJFTNN-0G1A	P	age: 5	of	9		

LITE-ON TECHNOLOGY CORPORATION

Property of Lite-On Only

BNS-OD-C131/A4

Property of Lite-On Only

Luminous Intensity	Unit : mc	d @20mA
Bin Code	Min.	Max.
D	65	85
Е	85	110
F	110	140
G	140	180
Н	180	240
J	240	310

Bin Code List For Reference

Dominant Wavele	ength Unit : nm	@20mA
Bin Code	Min.	Max.
H22	598.0	600.0
H23	600.0	603.0
H24	603.0	606.5
H25	606.5	610.0
H26	610.0	613.5

Part No.: LTL1CHJFTNN-0G1A

Property of Lite-On Only

CAUTIONS

1. Application limitation

The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household application.) Consult Liteon's sales in advance for information on application in which exceptional quality and reliability are required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as airplanes, automobiles, traffic control equipment, life support system and safety devices).

2. Storage

After being shipped from Liteon the LEDs should be kept at 30°C or less and 70%RH or less. The LEDs should be used within 3 months. They can be stored for a year in a sealed container with a nitrogen atmosphere and moisture absorbent material. Please avoid rapid transitions in ambient temperature in high humidity environments where condensation may occur.

3. Cleaning

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED.

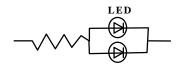
4. Forming & Mounting

When forming a lead, the leads should be bent at a point at least 3mm from the base of epoxy bulb. Do not use the base of the leadframe as a fulcrum during forming. Lead forming must be done before soldering at normal temperature. When mounted through hole type LED lamp, avoid the occurrence of residual mechanical stress due to clinching as figure shown here.

5. Soldering

When soldering, leave a minimum of 2mm clearance from the resin to the soldering point. Dipping the resin into the solder must be avoided.

Do not apply any stress to the lead frame during soldering while the LED is at high temperature.


Recommended soldering condition

Soldering iron		Wave soldering		
Temperature Soldering time	300°C Max. 3 sec. Max. (one time only)	Pre-heat Pre-heat time Solder wave Soldering time	100°C Max. 60 sec. Max. 260°C Max. 10 sec. Max.	

6. Drive Method

LED is a current operated device, and therefore, requires some kind of current limiting incorporated into the drive circuit. This current limiting typically takes the form of a current limiter resistor placed in series with the LED. Consider worst case voltage variations that could occur across the current limiting resistor. The forward current should not be allowed to change by more than 40% of its desired value.

Circuit model A

Circuit model B

(A) Recommended circuit.

(B) The difference of brightness between LEDs could be found due to the Vf-If characteristics of LED

Part No.: LTL1CHJFTNN-0G1A	Page :	8	of	9	

Property of Lite-On Only

7. ESD (Electrostatic Discharge)

Static Electricity or power surge will damage the LED. Use of a conductive wrist band or anti- electrostatic glove is recommended when handling these LED. All devices, equipment and machinery must be properly grounded.

8. Reliability Test

Classification	Test Item	Test Condition	Duration / Cycle	Referance Standard
Endurance Test	Room Temp. Operation Life	Ta= Room Temp, IDC= 30 mA	1000 hrs	
	Temperature Cycling	105° C ~ 25° C ~ -55° C ~ 25° C 30mins 5mins 30mins 5mins	10 cycles	MIL-STD-202F:107D (1980) MIL-STD-750D:1051(1995) MIL-STD-883D:1010 (1991) JIS C 7021: A-4(1982)
Environmental Test	Solder Resistance	Solder temperature is 260 ± 5 °C	10 sec	MIL-STD-202F:210A(1980) MIL-STD-750D:2031(1995) JIS C 7021: A-1(1982)
	Solderability	Solder temperature is 230 ± 5 °C	5 sec	MIL-STD-202F:208D(1980) MIL-STD-750D:2026(1995) MIL-STD-883D:2003(1991) JIS C 7021: A-2(1982)

9. Others

The appearance and specifications of the product may be modified for improvement without notice.

Page: 9 of